

Variational Principles for Non-symmetric Markov Chains

Zhi-Wen CHENG (Beijing Normal University)

> July 11-15, 2019 @ Jilin University

(Based on joint works with Pro. Y.H. Mao)

CONTENTS

2 Variational Principle of Addictive Functional

3 Variational Principle of Capacity of a Set

4 Future Works

- Irreducible discrete time Markov chain $X = (X_n)_{n \in \mathbb{N}}$ on countable state space S with transition matrix P.
- $\alpha > 0$ is an excessive measure: $\alpha_i \ge \sum_{j \in S} \alpha_j p_{ji}, i \in S$. Define \widehat{P} $\widehat{p}_{ij} := \frac{\alpha_j p_{ji}}{\alpha_i}, i, j \in S$.
 - P is symmetric with respect to α , if

$$P = \widehat{P}.$$

 Non-symmetric Markov chains are difficult to deal with than the symmetric ones. Doyle $(1994)^1$, Gaudillière and Landim $(2014)^2$ obtained the variational principle of the capacity between two disjoint sets.

Huang and $Mao(2018)^3$ gave the variational principle of hitting time for ergodic Markov chains.

Huang and $Mao(2019+)^4$ got the variational formulas of asymptotic variance.

http://www.math.dartmouth.edu/doyle, 1994

²Gaudillière A., Landim C.. A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probability Theory and Related Fields, 2014, 158: 55-89

³L.-J. Huang, Y.-H. Mao. Variational Principles of Hitting times for Non-reversible Markov Chains. Journal of Mathematical Analysis and Applications, 2018, 468-2:959-975

⁴L.-J. Huang, Y.-H. Mao.Variational Formulas for Asymptotic Variance of Markov Chains. Preprint

¹Doyle P.G.. Energy for Markov chains.

Dual Poisson Equation

• Poisson equation

For any non-trivial subset A of $S,\,\xi,\widehat{\xi}\geq 0,$ we consider poisson equation:

$$\begin{cases} (I - P)x(i) = \xi(i), & i \in A^c; \\ x(i) = \eta(i), & i \in A. \end{cases}$$
(

1)

5 / 15

2019.7.11-15

• Expression of solution Define $\tau_A = \inf\{n \ge 0 : X_n \in A\}$. When

$$\varphi(i) := \mathbb{E}_i \left[\sum_{n=0}^{\tau_A - 1} \xi(X_n) + \eta(X_{\tau_A}) \right]$$

is well defined, it is a solution of equation (1).

• Dual Poisson equation

$$\begin{cases} (I - \widehat{P})x(i) = \widehat{\xi}(i), & i \in A^c; \\ x(i) = \widehat{\eta}(i), & i \in A. \end{cases}$$

$$(2)$$

Variational Principle of Hitting Times

 Huang and Mao(2018)¹ obtained the variational principle of hitting time for ergodic Markov chains with stationary distribution π:

$$\frac{1}{\mathbb{E}_{\pi}[\tau_{A}]} = \inf_{\substack{f|_{A}=0, \pi(f)=1 \\ g|_{A}=0, \pi(g)=0}} \sup_{\langle f-g, (I-P)(f+g) \rangle_{\alpha},$$

where $\pi(f) := \sum_{i \in S} \pi_{i} f_{i}$ and $\langle f, g \rangle_{\alpha} := \sum_{i \in S} \alpha_{i} f_{i} g_{i}.$

• Aim:

$$\tau_A(\xi \equiv 1, \eta \equiv 0) \to \sum_{n=0}^{\tau_A - 1} \xi(X_n)(\eta \equiv 0)$$

¹L.-J. Huang, Y.-H. Mao. Variational Principles of Hitting times for Non-reversible Markov Chains. Journal of Mathematical Analysis and Applications, 2018, 468-2:959-975

Zhi-Wen CHENG (Beijing Normal University Variational Principles for Markov Chain

 ${\cal K}$ denotes the space of functions with finite support

$$\mathscr{S}(f) = \{i : f(i) \neq 0\}.$$

And let $L^2(\alpha)$ be the space of square summable functions endowed with the scalar product: $\langle f,g \rangle_{\alpha}$. And define $\langle f,g \rangle := \sum_{i \in S} f_i g_i$.

Let ν be an initial distribution such that there is a solution, denoted by $\hat{\varphi}$, of the following equation:

$$\begin{cases} (I - \widehat{P})x(i) = \frac{\nu_i}{\alpha_i}, & i \in A^c; \\ x(i) = 0, & i \in A. \end{cases}$$
(3)

Variational Principle of Addictive Functional

Theorem

If
$$\widehat{\varphi}$$
 and $\varphi := (\mathbb{E}_i \sum_{n=0}^{\tau_A - 1} \xi(X_n))_{i \in S}$ belong to $L^2(\alpha)$, then

$$\frac{1}{\mathbb{E}_{\nu} \sum_{n=0}^{\tau_A - 1} \xi(X_n)} = \frac{1}{\langle \widehat{\varphi}, (I - P) \varphi \rangle_{\alpha}} = \inf_{f \in \mathcal{F}_A} \sup_{g \in \mathcal{G}_A} \langle f, (I - P)g \rangle,$$
where $\mathcal{F}_A = \{f \in \mathcal{K} : f|_A = 0, \sum_{i \in A^c} f_i \xi_i = 1\},$

$$\mathcal{G}_A = \{g \in \mathcal{K} : g|_A = 0, \sum_{i \in A^c} \nu_i g_i = 1\}.$$

Definition of Capacity for Transient Markov Chains

For transient
$$P$$
, define $N := \sum_{n=0}^{\infty} P^n$.

Equilibrium set For any subset E of S, let τ_E⁺ := inf{n ≥ 1 : X_n ∈ E} be first return time of E. Define the escape function e_i := P_i(τ_E⁺ = ∞)1_E(i). A set E is an equilibrium set if ∑_{i∈E} α_ie_i < ∞ and for any initial

distribution, the set E is entered only finitely often a.s.

• Capacity of a equilibrium set E

$$C(E) := \sum_{i \in E} \alpha_i e_i$$

Variational Principle of Capacity for Symmetric Markov Chains

 In Kemeny, Snell and Knapp(1976)¹, there is a variational principle of capacity for symmetric transient Markov Chains: for any equilibrium set E,

$$C(E) = I_t(e) = \inf_{f \in \mathscr{F}_E} I_t(f),$$

where

$$I_t(f) := \langle f, Nf \rangle_{\alpha},$$

$$\mathscr{F}_E := \{ f : f_{E^c} = 0, \alpha(f) = C(E), \langle f, Nf \rangle_{\alpha} < \infty \}.$$

• Aim:

symmetric \rightarrow non-symmetric

¹J.G.Kemeny, J.L.Snell and A.W.Knapp. Denumerable Markov chains, 2nd.ed. Springer-Verlag, New York, 1976.

Zhi-Wen CHENG (Beijing Normal University Variational Principles for Markov Chain

Variational Principle of Capacity for Non-symmetric Markov chains

For any equilibrium set E and $f \in \mathcal{F}_E$, denote $\mathcal{F}_f := \{g \in \mathcal{F}_E : \langle g, Nf \rangle_\alpha < \infty\}$. We generalize the above result to non-symmetric Markov chains.

Theorem

Assume P is transient, then for any equilibrium set E,

$$C(E) = \inf_{f \in \mathscr{F}_E} \sup_{g \in \mathscr{F}_f} \langle g, Nf \rangle_{\alpha}.$$

For recurrent P, we can also get the variational principle.

Define the hitting function h:

$$h_i := \mathbb{P}_i(\tau_E < \infty).$$

The poisson equation related to the capacity is:

$$(I-P)h = e.$$

Life time
 E.Nummelin(1991)¹: Let L denote the life time of X

$$L = \sup\{n \ge 0 : X_n \in S\}.$$

Suppose that $\mathbb{P}_{i_0}\{L<\infty\}=1$ for some $i_0\in S.$ Let φ be a bounded solution of

$$(I-P)\varphi = \xi.$$

Then
$$\varphi = \mathbb{E}_{\bullet} \sum_{0}^{L} \xi(X_n)$$
 on $\{i \in S : P_i \{L < \infty\} = 1\}.$

Compare different excessive measures

¹E.Nummelin.On the Poisson Equation in the Potential Theory of a Single Kernel. Mathematica Scandinavica, 1991, 68:59-82

Zhi-Wen CHENG (Beijing Normal University Variational Principles for Markov Chain

2019.7.11-15 13 / 15

Define

$$e_{ji}^{(n)} = \mathbb{P}_j[X_n = i, X_m \neq j, 0 < m < n], \qquad e_{ji} = \sum_{n=1}^{\infty} e_{ji}^{(n)}.$$

$$\widehat{e}_{ji} = \begin{cases} e_{ji}, & i \neq j: \\ 1, & i = j. \end{cases}$$

Theorem

$$\begin{split} \mathcal{E} &:= \{ \text{excessive measures of } P \}, \\ \mathcal{E}_1 &:= \{ \text{Non-negative linear combination of } (\widehat{e}_{ji})_{i \in E} \}, \\ \mathcal{E}_2 &:= \{ \nu N | \nu \text{ is a measure} \}, \text{ then} \end{split}$$

$$\mathcal{E} = \mathcal{E}_1 = \mathcal{E}_2.$$

 \sim

THANKS !

Zhi-Wen CHENG (Beijing Normal University Variational Principles for Markov Chain

イロト イ団ト イヨト イヨト